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Abstract—Multichannel neural recording is one of the most 
important topics in the field of biomedical engineering. This is 
because there is a need to considerably reduce large amounts of 
data without degrading the data quality for easy transfer through 
wireless transmission. Video compression technology is of 
considerable importance in the field of signal processing. There 
are many similarities between multichannel neural signals and 
video signals. In this study, we propose a signal compression 
method that employs motion vectors (MVs) to reduce the 
redundancy between successive video frames and between 
successive channels. The method shows a signal-to-noise (error) 
ratio (SNR) of 25 db and data are compressed to 5% of their 
original size. 

Keywords-biomedical signal processing; video signal 
processing; multielectrode signals  

I.  INTRODUCTION  
Recently, in the field of biomedical engineering, neural 

data recording has gained considerable importance especially 
by employing neuroprosthetic devices and brain-machine 
interfaces (BMIs). Furthermore, multichannel neural recording 
is commonly used and is necessary for bioanalysis. However, 
recording large amounts of data has been a challenging task; 
for example, a typical recording experiment in which data is 
obtained from a 100-channel electrode array at the rate of 64 
kHz per channel with 12-bit precision yields a data rate of 
around 76.8 Mbps, which is much beyond the capacity of 
state-of-art wireless links that are used in biological 
applications. Wireless transmission can be used for conducting 
experiments on freely behaving primates and animals.  

Spontaneous signals have some good solutions, such as 
the so-called Neuro Processor Unit (NPU) [1][2][3][4]. The 
reason is that spontaneous signals are often emitted from a 
single neuron, which can be easily detected by simply setting a 
threshold (Fig. 1A). Therefore, 0-1 signals (with or without 
spikes) can be transmitted and the spontaneous neural signals 
can be compressed. On the other hand, evoked signals are 
often emitted from a bundle of neurons and not from a single 
neuron. Therefore, there is significant overlap of evoked 
signals, and hence, it is not possible to employ simple 
algorithms for analyzing them (Fig. 1B). Researchers require 
complete waveforms of the evoked signals for the analysis of  

Figure 1.   Recorded spontaneous (A) and evoked action potentials (B). Note 
the difference in the waveforms and response periods between the two kinds 
of action potentials. (The red arrow indicates the incidence of responses to a 
mechanical stimulation.)  

 
the signals. Because of the lack of an efficient data 
compression algorithm, existing neural recording systems can 
transfer only the complete waveform of a channel or the active 
region of a waveform, even in the case of the 0-1 digital signal. 
In order to solve this problem, we intend developing an 
appropriate compression algorithm for evoked signals using 
advanced signal processing techniques. 

 Though multichannel evoked signals appear to contain a 
huge amount of data, most of the data is redundant. The 
correlation between the data in successive channels is very 
high; in our experiment, an average value of more than 0.85 is 
obtained. This implies that redundancy in data can be 
eliminated using signal processing. In a previous study [5], an 
audio compression algorithm (MPEG 4 ALS) was employed 
to compress neural data to around 1/3 of their original data 
amount. A video compression algorithm can also be 
effectively used to compress large amounts of data. In this 
study, we use a video compression algorithm to compress 
neural signals.  

Another important requirement in a neural recording 
system is that it must be capable of operating with a low 
power. All biomedical chips that are implanted in living 
bodies must be capable of operating at a very low power (less 
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than or equal to 8–10 mW) [6], failing which the temperature 
increase would exceed 1°C and cause neural tissue damage. 
Thus, a compression algorithm intended for biomedical 
applications must be simple, such as in BMI. 

This paper presents a novel algorithm for compressing 
multichannel neural data to only 5% of the original data size 
while retaining information on the complete waveform of the 
signal represented by the data using a low power technique. 
The algorithm is based on the algorithm used for the 
successful compression of single-channel data in a previous 
work [7].  

II. DATA AND EXPERIMENTS  
 Neuronal responses to appropriate mechanical stimuli 

applied to the tail of a Wistar rat were recorded using a glass 
microelectrode positioned in the primary somatosensory 
cortex (S1) of the rat. The low-frequency components of the 
signals were filtered using a fifth-order Bessel filter with a 
passband of 330 Hz to 10 kHz. Data were then acquired at 100 
kHz using a 12-bit AD card (PCI-MIO-16E-4, National 
Instrument) with a LabVIEW user interface (Fig. 2).  

Figure 2.  Setup of the recording system 

 
The mechanically evoked action potentials recorded in 

the experiment were mediated by Aβ fibers from the 
peripheral nervous system (PNS) to the central nervous system 
(CNS) and were determined 25 to 40 ms after the onset of the 
stimulation. The spikes evoked by the mechanical stimuli 
overlapped to a significant extent, and hence, a considerable 
number of neuronal ensembles responded to the stimuli in the 
S1 of the rat. Therefore, the overlapping spikes recorded 
within a small period of time, approximately 15 ms, were the 
main features of our signal. 

III. WHY CHOOSE VIDEO COMPRESSION 
ALGORITHM 

Before proceeding with signal processing, we shall 
modify the neural signal by employing a simple transform. 
This is because that the numerical range of neural signals 
differs from that of video signals. However, the precision of 

both signals is similar—8 bits [8] [9]. We transform the neural 
signal to 0–255 with an average of 128 by using a linear 
transform so that the video compression algorithm can be 
applied to it.  

 

A. Biomedical and electrophysiological analysis   
A correlation between successive channels is observed in 

the results of electrophysiological analysis. When a 
multielectrode probe detects firing neurons, the signals are 
recorded by more than one channel. If a channel is close to the 
firing neuron, then it receives the signals promptly. Otherwise, 
the signals are received after a delay. These signals will 
transmit and decay in the cell [10]. If the distance between 
neighboring channels is very small, the difference between the 
times taken for receiving the signals will be very small. These 
characteristics offers a high correlation between the channels.   

TABLE I.   CORRELATION BETWEEN NEIGHBORING ELECTRODES  

 Correlation between neighboring electrodes. The correlation between electrodes 8&9 and 9&10 appears 
to be low since electrode 9 is broken. It becomes difficult to carry out experiments when only 16 of the 
available channels are proper. Despite this difficulty, a very high correlation between the 
abovementioned electrodes is obtained. 

 

This high correlation indicates high spatial redundancy in 
the multichannel neural signal. Once the neuron fires, similar 
spike signals are detected by more than one electrode. Video 
signals have the same characteristic. A series of images 
comprise the video, but neighbor images do not change 
significantly (Fig. 3). Recently video compression algorithm 
has many skills to deal with it. That is way we choose video 
compression algorithm to compress multichannel neural signal.  

Figure 3.   Images in a video sequence (Stefan.y)   

B.  Motion vector (MV) 
In order to apply video compression to multichannel 

neural signals, it is necessary to generate a “pseudo neural 
video sequence.” How to generate of a neural video sequence 
is very important because it has a strong influence. For 
analyzing the method of generation of the sequence, it is 
necessary to know the operation of the video compression 
algorithm in order to remove the spatial redundancy. 

In video compression algorithms, MVs play an important 
role in providing a high compression rate. For example, a 

Channel 1&2 2&3 3&4 4&5 5&6 
Correlation 0.893 0.869 0.920 0.898 0.847 

Channel 6&7 7&8 8&9 9&10 10&11 
Correlation 0.856 0.849 0.124 0.610 0.841 

Channel 11&12 12&13 13&14 14&15 15&16 
Correlation 0.889 0.944 0.583 0.762 0.722 

Time 

698



commonly used video compression algorithm (MPEG 2) can 
compress a broadcast video sequence to a frame rate of 30 fps, 
a frame size of 720 × 480, 8 bits/pixel, and a data transfer rate 
ranging from 248.83 Mbps to 3 Mbps. Thus, the data size can 
be decreased to a considerable extent (by around 96.8% to 
98.8%). 

The MV helps to reduce spatial redundancy. Fig. 3 shows 
a sport sequence (Stefan.y). From the figure, it can be 
observed that the background of the photograph does not 
change significantly, though the athlete moves from the left to 
the right. Thus, we can determine the MV between successive 
frames. In this case, we determine only the MVs between 
frames and their differences and do not re-record the amount 
of the data. Thus, spatial redundancy is eliminated and the 
data size can be decreased considerably.  
 

C.  Frame setting 
Fig. 4 shows two methods for generating a multichannel 

neural video sequence. In one method, signals from channel 1 
are set as frame 1, signals from channel 2 are set as frame 2, 
etc. In the other method, signals at time 1 are defined to lie in 
frame 1, signals at time 2 to lie in frame 2, etc. However, the 
choice of a suitable method from the two above-mentioned 
ones depends on whether the neural signals show a high 
correlation between successive channel frames or between 
successive time frames. This is because if the correlation is 
high, the MV technique can be used in the compression 
algorithm to reduce redundancy and obtain high performance 
efficiency. 
 

Figure 4.   Two methods for generating a multichannel neural video sequence. 
(Above) Classify signals from channel N (electrode N) in frame N and (Below) 
classify signals at time N in frame N.  

Although setting time 1 as frame 1 appears to be 
rational during signal processing, bio-knowledge has a 
different explanation for the same. Researchers analyze 
experimental results and offer different interpretations for 
experiments performed at different times. Even if the 
experiments are identical, researchers still treat them as 
independent experiments. 

In this study, we choose to generate a neural video 
sequence by using the correlation between neighboring 
channels. Owing to the nature of the evoked signals, it is 
possible to record and compress the signals only 25–40 ms 
after the stimulation. The sampling rate is 64 kHz. Therefore, 
for a total of 1024 data samples, which are recorded between 

25–40 ms (data for 16 ms)( Fig. 5), the size of each frame is 
32 × 32 pixels. Each electrode has 16 channels, and therefore, 
each trial also has 16 frames. Each experiment has 20 trials for 
a total of 320 frames. These 320 frames form our “pseudo 
 neural signal sequence.” 

 
Figure 5.  Multichannel neural signals used in the experiment. The 
stimulation is applied at time 0, and the analysis is carried out 25–35 ms after 
the stimulation.    
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Figure 6.  Block diagram for video neural signal compression. 

IV. VIDEO COMPRESSION ALGORITHM  
The commonly used video compression algorithms such 

as H.264, scalable video compression (SVC), and multiview 
compression are very complex. Hence, we use a very basic 
(simple) video compression algorithm because of its low 
power. However, a complex algorithm shows better 
performance than a simple algorithm, albeit at a high-
computational cost. In Fig. 6, we present the flow chart of the 
proposed algorithm.  

Since a trial comprises 16 frames, we consider the 
frames of a trial as a single group. The first frame of the group 
uses intra-frame coding, while the rest of the frames use the 
inter-frame coding. We use the previous frame to determine 
the MV of a frame, and then perform video compression 
flow(Fig. 6), motion estimation, and motion compensation. 
After discrete cosine transformation (DCT) of the residue, 
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quantization is performed. Entropy coding increases the 
efficiency of the output stream. However, we did not use any 
complex entropy coding such as that reported in [11]. We only 
used run-length coding, Huffman coding, and arithmetic 
coding. 

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

8 13 18 23 28 33 38 43 48

quatization value

co
m

pr
es

se
d 

da
ta

/o
ri

gi
na

l d
at

a

 
Figure 7.   Ratio of compressed data size to original data size vs. quantization 
value obtained after DCT. 
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Figure 8.  Energy ratio (SNR and PSNR) vs. quantization value obtained 
after DCT. 
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Figure 9.   R-D curve: energy ratio (SNR and PSNR) VS the ratio of the 
compressed data size to the original data size. 
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Figure 10.  Original signal, total 16 electrodes signals, sorting by the depth . 
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Figure 11.  Compressed signals (SNR=35db, 20% data amount of original 
signals), total 16 electrodes signals, sorting by the depth 
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Figure 12.  Compressed signals (SNR=25db, 5% data amount of original 
signals), total 16 electrodes signals, sorting by the depth 

V. RESULTS  
In this study, we provide different quantization values for 

different applications.  From Figs. 7 and 8, we can observe 
that a high quantization value decreases the extent of data 
compression and leads to a low signal-to-noise-ratio (SNR) or 
a low peak-signal-to-noise-ratio (PSNR). However, it is likely 
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that there is a trade-off between the extent of compression 
(bits) and the quality of data (SNR and PSNR). Fig. 9 clearly 
shows the existence of such a trade-off. From these figures, 
we can choose an appropriate quantization value. From our 
experiments, it is seen that an SNR of 25 db is adequate for 
researchers to carry out further analysis. (We provided the bio-
team with several different SNR data sets, and they inferred 
that a value of 25 db is adequate.)(Fig. 10,11,12) The size of 
the compressed data in our experiments is less than 5% of the 
original data size. The obtained result is therefore significant 
and shows that 16-channel data can be compressed to single-
channel data or to a greater extent (16 * 0.05 =0.8< 1).  

VI.  CONCLUSION 
Neural signal processing will undoubtedly have wide 

applications in future. Multichannel signals are particularly 
important because many analyses such as the analysis of 
overlapping spikes cannot be carried out without using these 
signals. At present, owing to the development of advanced 
digital signal processing techniques and improved 
semiconductor technology, low power and rapid computation 
can be realized together. In this study, we use a video 
compression algorithm for multichannel neural signal 
processing and obtain excellent results. In the future, we want 
to design a dedicate hardware for this algorithm. We intend 
presenting a study on the importance of digital signal 
processing (DSP) in bioresearch, such as computational and 
memory requirements of the algorithm. 
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